keras is used in Windows10 + Anaconda environment.
I recently learned that tqdm is useful and started using it.
Apparently, when tqdm is imported in my environment, the log during learning of keras is broken.
Even if you don't actually use tqdm in your code, it will collapse.
In my environment, the reproducibility is 100% so far, so tqdm is definitely bad.
In terms of behavior, it seems that "\ r" does not seem to work well inside.
Reinstalling Anaconda, creating a new virtual environment, installing previous versions of tqdm,
I tried to install via tqdm via conda and pip, but it has not changed.
If anyone knows how to solve it, thank you.
MNIST tutorial code execution example
- tqdm imported
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [==============================]-ETA: 14:10-loss: 2.3458-acc: 0.07- ETA: 1:17-loss: 1.3900-acc: 0.5391-ETA: 40s-loss: 1.0298-acc: 0.658-ETA: 27s-loss: 0.8557-acc: 0.71-ETA: 20s-loss: 0.7458-acc: 0.75- ETA: 16s-loss: 0.6699-acc: 0.78-ETA: 13s-loss: 0.6096-acc: 0.80-ETA: 11s-loss: 0.5708-acc: 0.81-ETA: 9s-loss: 0.5340-acc: 0.8280-ETA: 8s-loss: 0.5024-acc: 0.839-ETA: 7s-loss: 0.4833-acc: 0.846-ETA: 6s-loss: 0.4624-acc: 0.853-ETA: 6s-loss: 0.4440-acc: 0.859-ETA: 5s- loss: 0.4305-acc: 0.865-ETA: 5s-loss: 0.4201-acc: 0.868-ETA: 5s-loss: 0.4065-acc: 0.872-ETA: 4s-loss: 0.3941-acc: 0.875-ETA: 4s-loss: 0.3851-acc: 0.878-ETA: 4s-loss: 0.3758-acc: 0.882-ETA: 3s-loss: 0.3670-acc: 0.884-ETA: 3s-loss: 0.3577-acc: 0.888-ETA: 3s-loss: 0.3499- acc: 0.890-ETA: 3s-loss: 0.3418-acc: 0.893-ETA: 2s-loss: 0.3340-acc: 0.895-ETA: 2s-loss: 0.3281-acc: 0.89 7-ETA: 2s-loss: 0.3223-acc: 0.899-ETA: 2s-loss: 0.3187-acc: 0.900-ETA: 2s-loss: 0.3132-acc: 0.902-ETA: 1s-loss: 0.3088-acc: 0.903- ETA: 1s-loss: 0.3035-acc: 0.905-ETA: 1s-loss: 0.2979-acc: 0.907-ETA: 1s-loss: 0.2930-acc: 0.908-ETA: 1s-loss: 0.2883-acc: 0.910-ETA: 1s-loss: 0.2845-acc: 0.911-ETA: 1s-loss: 0.2805-acc: 0.912-ETA: 1s-loss: 0.2771-acc: 0.913-ETA: 0s-loss: 0.2731-acc: 0.914-ETA: 0s- loss: 0.2696-acc: 0.915-ETA: 0s-loss: 0.2659-acc: 0.916-ETA: 0s-loss: 0.2635-acc: 0.917-ETA: 0s-loss: 0.2606-acc: 0.918-ETA: 0s-loss: 0.2574-acc: 0.919-ETA: 0s-loss: 0.2544-acc: 0.920-ETA: 0s-loss: 0.2511-acc: 0.921-ETA: 0s-loss: 0.2493-acc: 0.922-ETA: 0s-loss: 0.2479- acc: 0.922-ETA: 0s-loss: 0.2455-acc: 0.923-4s 73us/step-loss: 0.2454-acc: 0.9235-val_loss: 0.1531-val_acc: 0.9523
Epoch 2/20
60000/60000 [==============================]-ETA: 4s-loss: 0.1293-acc: 0.953-ETA: 3s-loss: 0.1000-acc: 0.969-ETA: 2s-loss: 0.1068-acc: 0.967-ETA: 2s-loss: 0.1030-acc: 0.969-ETA: 2s-loss: 0.1066-acc: 0.968-ETA: 2s- loss: 0.1034-acc: 0.970-ETA: 2s-loss: 0.1036-acc: 0.969-ETA: 2s-loss: 0.1065-acc: 0.969-ETA: 2s-loss: 0.1084-acc: 0.967-ETA: 2s-loss: 0.1123-acc: 0.966-ETA: 2s-loss: 0.1091-acc: 0.967-ETA: 2s-loss: 0.1086-acc: 0.967-ETA: 2s-loss: 0.1078-acc: 0.968-ETA: 2s-loss: 0.1057- acc: 0.968-ETA: 2s-loss: 0.1054-acc: 0.968-ETA: 1s-loss: 0.1083-acc: 0.968-ETA: 1s-loss: 0.1077-acc: 0.968-ETA: 1s-loss: 0.1101-acc: 0.967-ETA: 1s-loss: 0.1099-acc: 0.967-ETA: 1s-loss: 0.1097-acc: 0.967-ETA: 1s-loss: 0.1092-acc: 0.967-ETA: 1s-loss: 0.1094-acc: 0.967- ETA: 1s-loss: 0.1090-acc: 0.967-ETA: 1s-loss: 0.1085-acc: 0.968-ETA: 1s-loss: 0.1084-acc: 0.968-ETA : 1s-loss: 0.1083-acc: 0.968-ETA: 1s-loss: 0.1085-acc: 0.967-ETA: 1s-loss: 0.1079-acc: 0.967-ETA: 1s-loss: 0.1080-acc: 0.968-ETA: 1s -loss: 0.1077-acc: 0.968-ETA: 1s-loss: 0.1075-acc: 0.968-ETA: 1s-loss: 0.1071-acc: 0.968-ETA: 1s-loss: 0.1067-acc: 0.968-ETA: 1s-loss : 0.1069-acc: 0.968-ETA: 1s-loss: 0.1067-acc: 0.968-ETA: 0s-loss: 0.1065-acc: 0.968-ETA: 0s-loss: 0.1066-acc: 0.968-ETA: 0s-loss: 0.1063 -acc: 0.968-ETA: 0s-loss: 0.1063-acc: 0.968-ETA: 0s-loss: 0.1056-acc: 0.968-ETA: 0s-loss: 0.1051-acc: 0.969-ETA: 0s-loss: 0.1051-acc : 0.969-ETA: 0s-loss: 0.1045-acc: 0.969-ETA: 0s-loss: 0.1044-acc: 0.969-ETA: 0s-loss: 0.1044-acc: 0.969-ETA: 0s-loss: 0.1039-acc: 0.969 -ETA: 0s-loss: 0.1040-acc: 0.969-ETA: 0s-loss: 0.1044-acc: 0.969-ETA: 0s-loss: 0.1037-acc: 0.969-ETA: 0s-loss: 0.1042-acc: 0.969-ETA : 0s-loss: 0.1038-acc: 0.969-ETA: 0s-loss: 0.1035-acc: 0.969-ETA: 0s-loss: 0.1032-acc: 0.969-ETA: 0s-loss: 0.1035-acc: 0.969-ETA: 0s-loss: 0.1035-acc: 0.969-3s 50us/step-loss: 0.1035 -acc: 0.9694-val_loss: 0.0872-val_acc: 0.9731
- No tqdm import
Train on 60000 samples, validate on 10000 samples
Epoch 1/2060000/60000 [=======================]-4s 70us/step-loss: 0.2448-acc: 0.9247-val_loss : 0.1020-val_acc: 0.9681
Epoch 2/20
60000/60000 [=======================]-2s 41us/step-loss: 0.0998-acc: 0.9690-val_loss : 0.0814-val_acc: 0.9742
Supplemental information (FW/tool version etc.)
Windows10
Anaconda 1.9.7
python 3.6.8
tensorflow-gpu 1.14.0
keras 2.2.4
tqdm 4.25.0
-
Answer # 1
Related articles
- python - it can be run with jupyter notebook, not vscode
- python - about launching jupyter notebook from windows powershell
- python - the print output of jupyter notebook is hard to see
- python - jupyter notebook doesn't work with vs code
- python 3x - sentence classification keras cannot build a model from embedding to lstm well
- python - shuffle a few lines of dataframes together using pandas
- jupyter - i want to resolve the keras error "module'keraslayers' has no attribute'dence'"
- python 3x - i want to save the csv file saved by jupyter lab on the desktop
- i can't install cvxpy with python jupyter
- python - keras: about batch_size (batch_size = 0)
- python - 3 class classification by keras
- python - image recognition with keras
- python - keras confusion matrix
- python - failed to import tensorflow in jupyter notebook
- python 3x - about python keras model building
- python 3x - python keras about the shape of learning data
- python - about learning mnist data with keras
- python - what to do if the jupiter notebook says the kernel appears to have died it will restart automatically
- python - i want to make time series predictions using keras
- python - keras graph partition
- python 3x - about value error in keras predict
- python 3x - keras predict results do not change
- python - i want to design a cnn with 2 inputs and 1 output with keras
- only part of the data is recognized when learning python
- python 3x - tensorflow modelpredict () error
- python 3x - sentence classification keras cannot build a model from embedding to lstm well
- python 3x - about python keras model building
- python 3x - python keras about the shape of learning data
- python 3x - python keras
- python 3x - i learned my own data with yolo-v3, but the recognition result is the same as before my own learning
This was my first time looking into it, but there seems to be a separate library called keras-tqdm.
If you don't mind, why not try this?